Training L2

Electrical Design and Control System Wiring
Objectives

Understand:
- Understand the electrical design process
- Understand the control system wiring architecture
- Understand how to do power and control wiring
- Understand troubleshooting process and questions to ask
Electrical Design Process Flow

Game Description

FIRST Game Constraints

Robot Actions to Play game

FIRST Robot Constraints

Control Component Library (BOM)

Controls Concept

- Controls Detail Design:
 - Control Component Definition
 - Schematic / Bill Of Material
 - Controls Layout

Robot

- Acquisition Concept
- Orientation / Storage Concept
- Execution Concept

Mobility Concept
Electrical Design Process

Prototype Steps:
1. Determine Motors
2. Determine Sensors
3. Determine Control Structure

Prelim Steps:
1. Prelim layout
2. Prelim CID
3. Prelim BOM – order parts

Final Design Steps:
1. Develop Schematics
2. Develop Layout drawings
3. Complete BOM
4. Complete CID

Robot Strategy
- Game Description
- Game Analysis
- Functional Requirements
- Concept / Prototype
- Detailed Design
- Fabrication / Assembly / Test
- Robot Competition

Robot Design
- Robot Design
- Robot Build
- Robot Eval

Robot Build
- Robot Build
- Robot Eval

Robot Eval
- Robot Eval

Game Object (Placed in Goal)

Game Description

Game Analysis

Functional Requirements

Concept / Prototype

Prelim Design

Detailed Design

Fabrication / Assembly / Test

Robot Competition

Control Interface Document (CID)

1) Item Number
2) Module Name: (e.g. lift)
3) I/O device name: (e.g. lift Motor)
4) I/O device type: (e.g. switch, motor, solenoid, encoder, ultrasonic, optical switch)
5) Device ID: (e.g. M1, SW3, ENC1, US1, SOL1)
6) Controller ID: (e.g. PWM0, K3)
7) Cable ID: From Tag - To Tag: (e.g. PWM1 - M3)
Electrical Design Process Steps

CONCEPT PHASE
• Develop control strategy during the robot concept phase
• Define the control hardware
• Work with mechanical team to develop a control hardware layout concept

DETAILED DESIGN
• Develop the robot controller Interface Document (CIM)
• Develop robot schematic / Develop Bill Of Materials (BOM) with weights
• Collect data sheets and component manuals (Electronic “PDF” preferred)
• Develop final electrical layout, cable routing diagram, fuse map

FABRICATION
• From the BOM collect control hardware
• Mount control hardware and wire

TEST
• Check connections and measure for shorts
• Power up / Verify all LED status lights

IF IT IS NOT WRITTEN IT DOES NOT EXIST
Electrical Design Documentation Tools

Control Interface Document (CIM)

- Schematic (Power/Signal)
- Controls Layout / Harness, Fuse diagram

(See Electrical handbook for details)

- Bill Of Materials
- Data Sheets
- Manuals
Electrical Layout Considerations

- The control panel should be designed such that it can be assembled independent of the robot and installed on the robot at the end of the robot build.
- Allow for component access to troubleshoot or replace.
- All status LED’s should be visible for troubleshooting.
- Battery should be mounted securely and placed for easy replacement.
- Place motor controllers close to the PDP.
- The power switch should be placed such that it has easy access.
- Place electrical components such that they can not be damaged from mechanical operations on the robot.
Battery Installation

- Battery must be placed for easy replacement
- Battery must be mounted securely in the robot

Battery Holder

Velcro straps to secure and for easy removal
Control System Layout Examples

Battery Wiring (Short Leads)

Power Wires (At the lower level)
Control System Layout Examples

- Excess cable spooled and tie wrapped
- Motor-Module Power cable bundle
- Battery Holder / Strap
- Battery Wiring (Short Leads)
FIRST Pictorial Control System Wiring
Wire Level Architecture

Primary Power
- Battery (Battery)

Motor Power
- Power Switch (120A Breaker)

Control Module Power
- Power Distribution (PDP)
- Talon SRX / Talon SP
- Relay (Spike)
- RoboRio
- Voltage Regulator Module (VRM)
- Pneumatics Control Module (PCM)

Signal (#22)
Selecting the correct wire gauge

Read the Game Manual!!

<table>
<thead>
<tr>
<th>Application</th>
<th>Minimum Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 – 40A protected circuit</td>
<td>12 AWG (2.052mm)</td>
</tr>
<tr>
<td>21 – 30A protected circuit</td>
<td>14 AWG (1.628mm)</td>
</tr>
<tr>
<td>6 – 20A protected circuit</td>
<td>18 AWG (1.024mm)</td>
</tr>
<tr>
<td>Between the PDP dedicated terminals and the VRM or PCM</td>
<td>18 AWG (1.024mm)</td>
</tr>
<tr>
<td>Compressor outputs from the PCM</td>
<td>18 AWG (1.024mm)</td>
</tr>
<tr>
<td>Between the PDP and the roboRIO</td>
<td>22 AWG (0.645mm)</td>
</tr>
<tr>
<td>VRM 2A circuits</td>
<td>22 AWG (0.645mm)</td>
</tr>
<tr>
<td>5A protected circuit</td>
<td>22 AWG (0.645mm)</td>
</tr>
<tr>
<td>roboRIO PWM port outputs</td>
<td>26 AWG (0.404mm)</td>
</tr>
<tr>
<td>SIGNAL LEVEL circuits (i.e. circuits which draw 1A continuous and have a</td>
<td>28 AWG (0.321mm)</td>
</tr>
<tr>
<td>source incapable of delivering >1A, including but not limited to roboRIO</td>
<td></td>
</tr>
<tr>
<td>non-PWM outputs, CAN signals, PCM Solenoid outputs, VRM 500mA outputs and</td>
<td></td>
</tr>
<tr>
<td>Arduino outputs)</td>
<td></td>
</tr>
</tbody>
</table>

(2015 Manual R38)
Wire Color Code and Sizing

- Battery – power switch – PDP(#6)
 +Voltage: RED
 - Voltage: BLACK

- Motor Power: (#10, #12)
 +Voltage: RED
 - Voltage: BLACK

- Control Module Power: (#18)
 +Voltage: RED
 - Voltage: BLACK

- CAN: (#22)
 CANHigh: YELLOW
 CANLow: GREEN

- Signal: (#26)
 Typically white in cables
Circuit Fusing

<table>
<thead>
<tr>
<th>Branch Circuit Breaker</th>
<th>Circuit Breaker Value</th>
<th>Quantity Allowed Per</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Controller</td>
<td>Up to 40A</td>
<td>1</td>
</tr>
<tr>
<td>CUSTOM CIRCUIT</td>
<td>Up to 40A</td>
<td>1</td>
</tr>
<tr>
<td>Relay Module</td>
<td>Up to 20A</td>
<td>1</td>
</tr>
<tr>
<td>Additional PCM – with compressor</td>
<td>20A</td>
<td>1</td>
</tr>
<tr>
<td>Additional VRM (non-radio)/Additional PCM (non-compressor)</td>
<td>20A</td>
<td>3 total</td>
</tr>
</tbody>
</table>

(2015 Manual R37)
Component Wiring Best Practices

- Develop a harness diagram that shows wire routing
- Separate wires by current level (wires of different current levels should not run parallel to each other)
- If high current and low current wires should cross, they should be placed perpendicular to each other
- Secure wire in such a way that prevents mechanical impact of any kind from pulling wires
- Check all wire crimps for a good connection / Insulate all connectors
- Allow slack in wire to replace control component
- Do not run wires through frame members
- Battery cables short as possible to PDP / Place motor controllers close to the PDP
- Label all cables that go to the RoboRio
- NEATNESS COUNTS – tie up cable runs and tie wrap spooled excess wires/cables
Battery Terminal Wiring:

- Wire is stripped back the length of the terminal, about $\frac{3}{4}”$.

- Insert wire between the shell and the terminal. **Do not insert wire under screw!** The screw pushes on the copper clamp, not the wire.

- When terminated properly, the wire should take on the shape of the shell and cannot be moved.

Terminals are turned to inside and are mounted on inside of terminal, allowing battery case to shield them from abrasion.

Insert a star washer between the wire terminal and the battery terminal to prevent slipping.
Wiring Main Robot Power Switch To PDP

See - FIRST Wiring the 2015 FRC Control System.pdf for detailed wiring instructions
Wiring Main Robot Power Switch To PDP

See - FIRST Wiring the 2015 FRC Control System.pdf for detailed wiring instructions

Insulate terminals
To use the Wago connectors, insert a small flat blade screwdriver into the rectangular hole at a shallow angle then angle the screwdriver upwards as you continue to press in to actuate the lever, opening the terminal.

Two sizes of Wago connector are found on the PDP:
- Small Wago connector: Accepts 10AWG-24AWG, strip 11-12mm (~7/16")
- Large Wago connector: Accepts 6AWG-12AWG, strip 12-13mm (~1/2")

To maximize pullout force and minimize connection resistance wires should not be tinned (and ideally not twisted) before inserting into the Wago connector.

Look for stray wire whiskers after inserting the wire.
Wiring Power to Control Modules

See - FIRST Wiring the 2015 FRC Control System.pdf for detailed wiring instructions

PDP to RoboRio

PDP to VRM

PDP to PCM
PDP to Motor Controllers

See - FIRST Wiring the 2015 FRC Control System.pdf for detailed wiring instructions

Length to motors to be short as possible
Wiring the Pneumatics Control Module (PCM)
Wiring the Radio Power and Ethernet

See - FIRST Wiring the 2015 FRC Control System.pdf for detailed wiring instructions
Wiring the CAN Bus

See - FIRST Wiring the 2015 FRC Control System.pdf for detailed wiring instructions

RoboRIO to PCM

PCM to PDP
Robot Signal Light

See - FIRST Wiring the 2015 FRC Control System.pdf for detailed wiring instructions

Robot Signal Light (RSL) Wiring:

➢ Use 2-wire cable from Digital Sidecar to RSL Cut connector off of cable end at RSL

➢ Connect (-) to center (N), (+) to (La) or (Lb)

➢ jumper between (La) and (Lb) RSL connection
Jaguar Wiring

For power wiring use 12AWG Wire with #6 ring or spade terminals.

Maintain 0.5" clearance around all vents.

Motor output is not protected against short-circuits.

From Power Distribution Module

(-) In
(+) In

Motor Out

(-) Motor
(+) Motor

Mounting holes 3.50" centers

Maintain 0.5" clearance around all vents

Use hooks to prevent wires shaking loose

+5V is optional (no internal connection)

PWM speed signal from Digital Sidecar

PWM +5V
GND

Status LED

User Switch

Normally-closed Limit switches

Reverse direction switch(es)

Forward direction switch(es)

Install jumpers if limit switches are not used.

Motor coast/brake jumper

Team 2228 CougarTech | 30
Talon SRX Wiring

CAN Wiring

Data Port Pinout

+3.3V 1 2 +5V
Analog Input 3 4 Forward Limit
Quadrature B 5 6 DO NOT CONNECT
Quadrature A 7 8 Reverse Limit
Quadrature Index 9 10 GND
Cable Management

Where is the Robot power switch?????
Cable Management Example

➢ Signal wires should be isolated from power and motor wires
➢ Signal wires should cross power wires at right angles

Power wires to motor controllers are too long
Cable Management Example

- Length for battery wires are too long
- Signal wires appear to be isolated from power wires
- Power switch in an accessible location
- Motor power wires are short
Excess Cable Management

Cable Grouped and tie wrapped
Powering Up the Control System

- Make sure power switch is off

- Before plugging in the battery, make sure that all connections have been made correctly to the power switch and the PDP module and that all connections are secure

- Check the motor wiring is correct and that all connections are secure

- Check power wiring to control modules is correct and that all connections are secure

- Check signal wiring is correct and that all connects are secure

- Measure the resistance on the main power lines to the PDP for any shorts in the system

It is also recommended to put the robot on blocks so the wheels are off the ground before proceeding.
Potential Electrical Problems

- Metal shavings may have shorted out control component
- Power connections are not secure
- Signal cables are not secure and have come loose
- Fuse is blown or circuit breaker is bad
- Control component has gone bad
- Control component has overheated
- Motor controllers are not calibrated
Troubleshooting

• On power up check all module LED status lights and correct any issues (i.e. bad components)

 See - FIRST Status LED troubleshooting.pdf

• Set up the communications to the RoboRio and down load Input/Output (I/O) software to test control hardware

• Trouble shooting questions:
 ✓ If it was running and is not now What has changed?
 ✓ Does the control hardware component have power?
 ✓ Are all connections secure?
 ✓ Is LED status correct?
 ✓ Is their a signal if sensor is actuated?
Revisions

V160610 – RJV – Reformatted to team format
V150914 – RJV- Corrected action module to execution module
V150826 - Original