
Software Design Objectives

Team 2228 CougarTech | 1

Part I

• Understand Software design process

Part II

• Understand FIRST Code Development Environment

• Understand FIRST program structure

• Understand FIRST I/O class library

Part III

• Understand RoboRio Programming

Part I – Software Design Objectives

Team 2228 CougarTech | 2

• Understand the program design development process

Team 2228 CougarTech | 3

Robot Program Development Process

Robot(Team) :
• Functions
• Constraints

Robot Modules(Tech) :
• Functions
• Constraints

KICKOFF

From the kickoff video / game manuals:

• The team develops a game strategy

• The strategy defines the functions the robot has to

do and the constraints on the robot

The Technical team (Mechanical/Electrical/Software):

• Groups the functions to the major robot modules

per the robot model

• For each robot module a concept and a definition

of controlling devices is developed

Team 2228 CougarTech | 4

Robot Program Development Process

Software Definition:
• Object definition
• Object method definition
• Object data definition

Robot Software Development:
• Object logic development

Functions

Sensors /
Actuators

Robot Modules(Tech) :
• Functions
• Constraints

Robot Software Development:

• Software team defines the objects

needed(nouns) and methods(verbs)

for each mechanical module

• Develop robot logic code

Software Design Process Steps
1 Determine and organize functions robot has to perform from robot functional

requirements or mechanical module description.

2 Determine electrical hardware interface to computer I/O – electrical CID

document

3 Develop SOFTWARE PLAN: description of logic flow

4 Develop program code per team style guide

5 Software team review of code

6 Test code: I/O functionality and then module logic
Team 2228 CougarTech | 5

Part II FIRST JAVA Program Stucture Objectives

Team 2228 CougarTech | 6

• Understand FIRST Code Development Environment

•Understand the JAVA program structure of FIRST

• Understand the FIRST Classes covered in the “WPILib” library

FIRST Software Development Environment

Team 2228 CougarTech | 7

Software Development:

Software Execution:

Driver Station
Robot Controller

(RoboRio)

• Robot monitor

• Human input(Joy Stick / Switches) • Robot Program

Integrated

Development

Environment(IDE)

“Eclipse”

FIRST Library

Robot I/O Devices

Download Program Laptop PC

Laptop PC

Block Dia: FIRST Hardware Structure for Software

Team 2228 CougarTech | 8

General Program Class Structure

Team 2228 CougarTech | 9

FIRST program Template -

iterativeRobot

Robot.java

Robot Module

Class

ExecutionModule.java

Robot Module

Class

OrientaionModule.java

Robot Module

Class

AcquisitionModule.java

FIRST I/O Classes FIRST I/O Classes FIRST I/O Classes

FIRST WPILib

Robot I/O Map

RobotMap.java

Robot Class Diagram Example

Team 2228 CougarTech | 10

Team 2228 CougarTech | 11

FIRST “IterativeRobot” Main

FIRST “IterativeRobot” Extension Method Template

Class Declarations
• Declare and construct robot module objects

• Construct Object linkages if needed

Methods
robotinit()

Team code to invoke robot modules

autonomousInit()

Team code to invoke robot modules

autonomousPeriodic()

Team code to invoke robot modules

teleoperatedInit()

Team code to invoke robot modules

teleoperationPeriodic()

Team code to invoke robot modules

TestPeriodic()

Team code to invoke robot modules

Robot.java Organization
Robot.java creates module
objects and invokes module
objects during competition
phases

Robot.java also provides
linkages between objects

Module.java Organization

Team 2228 CougarTech | 12

Module ClassTemplate

Class Declarations
declare and construct module component I/O objects

Methods
robotInit()

Team code for module components

autoInit()

Team code for module autonomous initialization

autoUpdate()

Team code for module autonomous logic

teleopnit()

Team code for module teleoperation initialization

teleopUpdate()

Team code for module teleoperation logic

testUpdate()

Team code for module test logic

Module programs contain all
sequence logic for each
competition phase and test
code to verifiy it’s I/O
functionality

Team 2228 CougarTech | 13

“IterativeRobot” Extension Template

package org.usfirst.Rush.team2228.Robot;

import edu.wpi.first.wpilibj.IterativeRobot;

public class MyRobot extends IterativeRobot {

Public void robotInit(){

}

public void autonomousInit() {

}

public void autonomousPeriodic() {

}

public void teleoperatedInit() {

}

public void teleoperatedPeriodic() {

}

Public void testPeriodic(){

}

}

Robot.java

Team 2228 CougarTech | 14

Robot.java Declarations Example

package org.usfirst.Rush.team2228.Robot;

//Import the other files needed by the Robot Class program

import edu.wpi.first.wpilibj.IterativeRobot;

Import org.usfirst.frc.team2228.modules.Aquisition;

Import org.usfirst.frc.team2228.modules.Orientation;

Import org.usfirst.frc.team2228.modules.Execution;

public class MyRobot extends IterativeRobot{

//Define Constants just used by IterativeRobot

final int CONSTANT1 = 0.5; //constant comment

//Define the variables as members of our Robot class

int variable1; //variable comment – UNITS!

//Define robot module object variables as members of our Robot Class

AcquisitionModule gather;

OrientationModule elevator;

ExecutionModule shooter;

}

Team 2228 CougarTech | 15

Robot.java Initialization Program Example
//Imports the other files needed by the program

…

public class MyRobot extends IterativeRobot{

//Define Constants

…

//Define the variables as members of our MyRobot class

…

//Define object variables as members of our MyRobot Class

…

//Initializes the variables in the robotInit method,

//this method is called when the robot is initializing

public void robotInit() {

_gather = new AcquisitionModule();

_elevator = new OrientationModule();

_shooter = new ExecutionModule();

// create module component objects

_gather.robotInit();

_elevator.robotInit();

_shooter.robotInit();

}

}

Have robot modules create
I/O objects

Create module objects

Team 2228 CougarTech | 16

Robot.java Autonomous Program Example

// This method is called once each time the robot enters autonomous mode

public void autonomousInit() {

// Each robot module will initialize for autonomous mode

_gather.autoInit();

_elevator.autoInit();

_shooter.autoInit();

}

// This method is called each time the robot receives a packet(approx. 20ms) instructing

// the robot to be in autonomous enabled mode

public void autonomousPeriodic() {

// Each robot module will update its logic for autonomous operation

_gather.autoUpdate();

_elevator.autoUpdate();

_shooter.autoUpdate();

}

Team 2228 CougarTech | 17

Robot.javaTeleoperation (teleop) Program Example

// This method is called once each time the robot enters teleoperation mode

public void teleoperatedInit() {

// Each robot module will initialize for teleoperation mode

_gather.teleopInit();

_elevator.teleopInit();

_shooter.teleInit();

}

// This method is called each time the robot receives a packet(approx. 20ms) instructing

// the robot to be in teleoperation enabled mode

public void teleoperatedPeriodic() {

// Each robot module will update its logic for teleoperation

_gather.teleopUpdate();

_elevator.teleopUpdate();

_shooter.teleopUpdate();

}

Team 2228 CougarTech | 18

“RobotMap” Class Example
The RobotMap class defines the addressing of all I/O on the RoboRio

package org.usfirst.frc.team2228.robot;

/**

* The RobotMap is a mapping from the ports sensors and actuators

* are wired into to a variable name. This provides flexibility changing

* wiring, makes checking the wiring easier

*/

public class RobotMap {

//---Make RobotMap a singleton object – see software handbook

// ---DIGITAL I/O---

final int DIGITAL_IO_CHANNEL0 = 0;

// For example

final int ELEVATOR_AT_BOTTOM_SWITCH_PORT = 1;

final int DIGITAL_IO_CHANNEL2 = 2;

final int DIGITAL_IO_CHANNEL3 = 3;

final int DIGITAL_IO_CHANNEL4 = 4;

final int DIGITAL_IO_CHANNEL5 = 5;

final int DIGITAL_IO_CHANNEL6 = 6;
}

Format in Directory style:
(Constants -> in capital letters)
MODULE_DEVICE_LOCATION
and/or ACTION

Team 2228 CougarTech | 19

FIRST JAVA Class Library
• FIRST has also done most of the “Class” work for us in a library of

Classes called “WPILib”

• Team Rule: You must use FIRST Classes for I/O functions. New I/O

class should be reviewed by Team leader and Mentor before developing

FIRST Template

Team Robot CodeFIRST WPILib
input Classes
(sensors)

FIRST WPILib
output Classes
(actuators)

Team 2228 CougarTech | 20

FIRST JAVA Class Library: Sensors

See CTSoft-FIRST_2015_FRC_Java_Programming.pdf

Analog / Digital

Team 2228 CougarTech | 21

FIRST JAVA Class Library: Actuators

See CTSoft-FIRST_2015_FRC_Java_Programming.pdf

Analog / Digital

Team 2228 CougarTech | 22

FIRST JAVA Class Library: CAN

CAN(Controller Area Network) is a communications system to pass data between control components

There are a number of CAN devices supported in the FRC control system:

• Jaguar speed controllers

• CAN-Talon speed controllers

• The Power Distribution Panel (PDP)

• The Pneumatics Control Module (PCM)

• Device status is returned every 20ms for each device automatically - the program does not need to

request those updates. Whenever the program requests status from a CAN device it will be no sooner

than 20ms.

• If no information is received within 50ms, the device creation will fail (either an exception in Java or an

error status in C++).

See CTSoft-FIRST_2015_FRC_Java_Programming.pdf

Team 2228 CougarTech | 23

Software Documentation
Software Specification:

 Definition of I/O and I/O type for each control module

(RobotMap.java from CIM document)

 List of functions that need to be done for each control module

(Class model)

Class header:

 List of all methods, how a method is called and method description

 Description of all methods

(See Software Handbook)

Method Code:

 COMMENT-COMMENT-COMMENT (Why not How)

 JAVA Style Guide (syntax and readability guide – see Software Handbook)

Team 2228 CougarTech | 24

Program Development Best Practices
Code Review:

• All code should be reviewed by software sub-team and sub-team mentor.

More than the author needs to understand the code.

• Code review consists of checking the following:

✓ Input range check

✓ output range check

✓ Check for magic numbers (Documented? Better: Constant variable?)

✓ Check that any code written is already done in FIRST library

✓ Comments document why the program is written as it is

✓ Is the code backed up

✓ Does the code meet the robot function requirements!!!!!

Remember : There are many ways to solve a problem – The is only

one question to ask: Does the code meet the requirements and

comply with Team 2228 style guide?!!!

Team 2228 CougarTech | 25

Programming Best Practices

Sensor Inputs: All sensor inputs should be checked for range values.

Actuator outputs: All method outputs should be checked for range as not to exceed the range

input to actuators

Comments: There should be enough comments such that if they were grouped together anyone

would understand what the program was supposed to do

Failures: All code should consider what to do in a failure condition. For example: variable out of

range, stuck in a loop, external processes take too long due to failure, communications errors,

etc

NO MAGIC NUMBERS: All constant numbers should be associated with a constant name

Programming Style: Follow the programming style guide in the handbook..

A consistent style is beneficial when other members of our team and other teams read your code

Team 2228 CougarTech | 26

Program Execution Safety

• On powering up the robot check that the robot software mode is “DISABLED”

• Check to see that the robot wheels are off the ground

• On enabling the robot software, the person enabling the robot software needs to

HOLLER – “ROBOT ENABLING” and then WAIT for a “CLEAR” response from

the assigned robot safety observer. The person enabling then responds: “ROBOT

ACTIVE”

• Someone needs to be within reach of the robot “DISABLE” button to kill the robot

program.

• Safety glasses must be worn whenever the battery is connected to the robot
or any electronic devices.

Part III RoboRio Programming

Team 2228 CougarTech | 27

• Understand how to develop and execute a program

• Understand how to program I/O via a I/O test fixture

RoboRio Code Development and Execution

Team 2228 CougarTech | 28

• Open software handbook and go to section:

“Creating and Running Robot Programs”

• Link to FIRST documents and follow instructions

RoboRio I/O Test Fixture

Team 2228 CougarTech | 29

SW1

SW3

SW2

SW4 SW5

Analog

DC Motor

“Spike” Relay

Solenoid

Extend

Solenoid

Retract

Pressure

SwitchCompressor

Servo Motor ESC

ESC

Relay

5 Volts

12 Volts

GND 12V

M- M+

L1 L2 L3 L4

L5

L6

L7

Encoder

SW6

enc1an1

K1

PWM1 PWM2

FIRST JAVA Robot Program Lab

Team 2228 CougarTech | 30

➢ Program Digital I/O

 Develop class module to read test panel traffic light switch SW1

and turn on LED “L6” (Red) on Test Panel

 Develop class module to turn on traffic light LEDs on Test Panel,

then sequence LEDs with a delay between each LED activation

➢ Program Encoder Digital Input

 Develop class module to light LED “L6” (Red) for an “A” input and

light LED “L8” (Green) for a “B” input.

➢ Program Analog I/O

 Develop class module to read “Analog” potentiometer from Test

Panel

FIRST JAVA Robot Program Lab

Team 2228 CougarTech | 31

➢ Program Relay I/O

 Develop class module to activate “Spike” relay forward and

reverse on Test Panel. Put switch SW6 in “ESC” mode(up).

 Develop class module to run motor in forward and reverse. Put

switch SW6 in “Relay” Mode(down)

➢ Program PWM I/O

 Develop class module to set speed to “DC motor” from Test

Panel using “Motor ESC”. Put switch SW6 in “ESC” mode(up).

➢ Program PWM I/O

 Develop class module to move “Servo” left and right on Test

Panel

FIRST JAVA Robot Program Lab

Team 2228 CougarTech | 32

➢ Program Traffic Light State Machine

 x

➢ Program ramp up – ramp down speed control

 x

➢ Program speed control via joystick

 x

➢ Program LEDs via joystick push buttons

 x

FIRST JAVA Robot Program Lab

Team 2228 CougarTech | 33

➢ Program SRX speed controller

 x

➢ Program SRX encoder input

 x

Team 2228 CougarTech | 34

Revisions

V161208 – RJV; added robot class dia example
V160902 – RJV; updated test IO panel layout, RoboRio code exercises
V160503- RJV, updated with robot.java program construction
V151018 – RJV, Review update
V151001 – RJV, updated JAVA program to match car example, added software review
V150918 – RJV –re-wrote class-object discussion, renamed training module
V150914 – RJV-added software documentation slide
V150906 - Original

